Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE

COURSE PLAN

Academic Year 2019-20

Program:	B E – Computer Science & Engineering					
Semester :	2					
Course Code:	18CPS23					
Course Title:	C Programming for Problem Solving					
Credit / L-T-P:	4					
Total Contact Hours:	40					
Course Plan Author:	40					

Academic Evaluation and Monitoring Cell No. 29, Chimny hills, Hesarghtta Road, Chikkabanavara Bangalore – 560090, Karnataka, India Phone/Fax: +91-08023721315/ 23721477 www.skit.org.in

Table of Contents

A. COURSE INFORMATION	4
1. Course Overview	
2. Course Content	4
3. Course Material	5
4. Course Prerequisites	6
5. Content for Placement, Profession, HE and GATE	6
B. OBE PARAMETERS	7
1. Course Outcomes	7
2. Course Applications	8
3. Mapping And Justification	8
4. Articulation Matrix	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	13
Module – 2	14
E1. CIA EXAM – 1	15
a. Model Question Paper - 1	15
b. Assignment -1	
D2. TEACHING PLAN - 2	
Module – 3	
Module – 4	
E2. CIA EXAM – 2	
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN – 3	
Module – 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	20
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	21
G. Content to Course Outcomes	24
1. TLPA Parameters	24
2. Concepts and Outcomes:	25

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	lst year
Semester:	2	Academic Year:	2019-20
Course Title:	C PROGRAMMING FOR PROBLEM	Course Code:	18CPS23
Credit / L-T-P:	4-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	40	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	1/Module
Course Plan Author:	Iranna A	Sign	Dt:
Checked By:	Dhananjay V	Sign	Dt:
CO Targets	CIA Target : %	SEE Target:	%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Module	Content	Teachin g Hours	Identified Module Concepts	Blooms Learning Levels
1	Introduction to computer Hardware and software: Computer generations, computer types, bits, bytes and words, CPU, Primary memory, Secondary memory, ports and connections, input devices, output devices, Computers in a network, Network hardware, Software basics, software types. Overview of C: Basic structure of C program, executing a C program. Constant, variable and data types, Operators and expressions	8	Familiarize with writing of algorithms	L3 Apply, L3 Apply
2	Managing Input and output operations. Conditional Branching and Loops. Example programs, Finding roots of a quadratic equation, computation of binomial coefficients, plotting of Pascal's triangle.	8	Describe the different programming constructs and decomposition of problems into functions.	L3 Apply, L3 Apply
3	Arrays: Arrays (1-D, 2-D), Character arrays and Strings, Basic Algorithms: Searching and Sorting Algorithms (Linear search, Binary search, Bubble sort and Selection sort).	8	Use and implement data structures like arrays and structures to obtain solutions	L3 Apply, L3 Apply
4	User Defined Functions and Recursion. Example programs, Finding Factorial of a positive integers and Fibonacci series.	8	Measure the use of pointers with simple applications and implement different data structures	L3 Apply, L3 Apply
5	Structure and Pointers, Preprocessor Directives	8	Summarize the different implementation techniques of a data structures	L3 Apply, L2 Understan d
-	Total	40	-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Modul	Details	Chapters	Availability
es		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2, 3,	E. Balaguruswamy, Programming in ANSI C, 7 th Edition, Tata McGraw-		In Lib / In Dept
4, 5	Hill .		
	Brian W. Kernighan and Dennis M. Ritchie, The C Programming		
	Language, Prentice Hall of India.		
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2,3	LSumitabha Das	?	In Lib
1,2,3	Gary J Bronson		In Library
5	Vikas Gupta: Computer Concepts and C Programming		In Library
5	R S Bichkar, Programming with C, University Press, 2012		In Library
С	Concept Videos or Simulation for Understanding	-	-
C1	www.justdial.com/Computer-Training		
C2	https://youtu.be/gfRlaBM2oa8		
C3	https://youtu.be/SPuSgUJF1lo		
C4	https://youtu.be/lc3RtR_345g		
C5	https://youtu.be/SKh_sXkPvVE		
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	https://youtu.be/SKh_sXkPvVE		
2	https://youtu.be/gnYM_G1lLm0		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

Modul	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
es	Code					Level
NIL	NIL	NIL	NIL	NIL	NIL	NIL

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Modul es	Topic / Description	Area	Remarks	Blooms Level
1	Sorting Algorithms	Higher Study	NIL	L3 Apply
2	Linear and Nonlinear data structure	Gate	NIL	L3 L3 Apply
2	Searching	Higher Study	NIL	L3 Apply
3	Linked list	Higher Study & Industries	NIL	L3 apply

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Modul	Course	Course Outcome	Teach.	Concept	Instr	Assessme	Blooms'
es	Code.#	At the end of the course, student should be able to	Hours		Method	nt Method	Level
1	18CPS23.1	Illustrate simple algorithms from the different domains such as mathematics, physics, etc	8	Simple algorithms	Lecture, discussio n, problem solving	Viva, Assignmen t	L3 Apply
2	18CPS23.2	Construct a programming solution to the given problem using C.	8	If , while	Lecture / PPT,	Assignmen t, seminar	L3 Apply
3	18CPS23.3	Identify and correct the syntax and logical errors in C Program.	5	Types of errors	Lecture / PPT, problem solving	Assignmen t, seminar	L3 Apply
4	18CPS23.4	Modularize the given problem using functions and structures.	8	structures	Lecture, discussio n	Question and answer, test	L3 Apply
5	18CPS23.5	Apply the simple data structure to create a simple menu program and the list of applications.	8	pointers	Discussio n, lecture, ppt	Presentati on, assignmen t	L3 Apply

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to

Modul	Application Area	CO	Level
es	Compiled from Module Applications.		
1	Illustrate simple algorithms from the different domains such as mathematics,	CO1	L3
	physics, etc		
2	Construct a programming solution to the given problem using C.	CO2	L3
3	Identify and correct the syntax and logical errors in C Program.	CO3	L3
4	Modularize the given problem using functions and structures.	CO4	L3
5	Apply the simple data structure to create a simple menu program and the list	CO5	L2
	of applications.		
5	Collect the different data structure and Implement special functions.	CO5	L3

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Modul	IL Mapping		Mapping	Justification for each CO-PO pair						
es			Level		el					
-	со	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-					
1	CO1	PO1	2.4	The simple algorithms from the different domains such as mathematics, physics, etc. knowledge of engineering fundamentals are essential requirements in Electrical and electronics engineering. Substantially (highly-3) and merely (1) are mapped with PO1.	L3					
1	CO1	PO2	2.4	The programming solution to the given problem using branching and looping knowledge of engineering fundamentals are essential requirements in computer science engineering. Substantially mapped with po1.	L3					
1	CO1	PO4	2.5	To Develop C program using different searching and sorting techniques on arrays and strings are the essential requirements in computer science engineering. Substantially mapped with po1.	L2					
1	CO1	PO5	2.5	To Modularize the given C program using functions and recursion statements are the knowledge of engineering fundamentals are essential requirements in Electrical and electronics engineering. Substantially (highly-3) mapped with PO1.	L3					
1	CO1	PO12	2.4	To Develop C program using concepts of structures, pointers and pre-processor directives are the knowledge of engineering fundamentals are essential requirements in Electrical and electronics engineering. Substantially (highly-3) mapped with PO1.	L3					
1	CO2	PO1	2.4	The basic concepts and implement the using C programs are essential requirements in Electrical and electronics engineering. Substantially (highly-3) mapped with PO1.	; L3					
1	CO2	PO2	2.4	The simple algorithms from the different domains such as mathematics, physics, etc. are the environments and platforms to create innovative solutions for given specifications to meet industrial	L4					

				needs. Moderately (2) mapped with PO2.	
1	CO2	PO4	2.5	The programming solution to the given problem using branching and looping are the environments and platforms to create innovative solutions for given specifications to meet industrial needs. Moderately (2) mapped with PO2.	L3
1	CO2	PO6	1.7	To Develop C program using different searching and sorting techniques on arrays and strings are the environments and platforms to create innovative solutions for given specifications to meet industrial requirement. Moderately (2) mapped with PO2.	L3
1	CO2	PO12	2.4	To Modularize the given C program using functions and recursion statements are the knowledge of engineering and platforms to create innovative solutions for given specifications to meet industrial needs. Moderately (2) mapped with PO2.	L4
2	CO3	PO1	2.4	To Develop C program using concepts of structures, pointers and pre-processor directives are the knowledge of engineering environments and platforms to create innovative solutions for given specifications to meet industrial needs. Moderately (2) mapped with PO2.	L3
2	CO3	PO2	2.4	The basic concepts and implement the using C programs are essential requirements in Electrical and electronics engineering environments and platforms to create innovative solutions for given specifications to meet industrial needs. Moderately (2) mapped with PO2.	L3
2	CO3	PO3	2.5	The basic concepts and implement the using C programs to create, select and apply appropriate techniques, resources, and modern engineering and IT tools engineering activities with an understanding of the limitations. Moderately (2) mapped with PO5.	L3
2	CO3	PO12	2.4	The basic concepts and implement the using C programs are the function effectively as an individual and team members helps to develop multidisciplinary settings. Substantially (highly-3) mapped with POg.	L3
2	CO4	PO1	2.4	The basic concepts and implement the using C programs to communicate effectively on complex engineering activities with the engineering community. Substantially (highly-3) mapped with PO10.	L3
2	CO4	PO2	2.4	The basic concepts and implement the using C programs to learn lifelong to create, develop multidisciplinary projects. Moderately (2) mapped with PO12	L3
2	CO4	PO3	2.5	The simple algorithms from the different domains such as mathematics, physics, etc. are the core concepts of Electrical and electronics engineering to design, develop and validate computing systems. Moderately (2) mapped with PSO1	L3
2	CO4	PO12	2.4	To Develop C program using different searching and sorting techniques on arrays and strings are core concepts of Electrical and electronics engineering to design, develop and validate computing systems. Moderately (2) mapped with PSO1.	L3
3	CO5	PO1	2.4	To Modularize the given C program using functions and recursion statements are the core concepts of Electrical and electronics engineering to design, develop and validate computing systems. Moderately (2) mapped with PSO1.	L3
3	CO5	PO2	2.4	To Develop C program using concepts of structures, pointers and pre-processor directives are the core concepts of Electrical and electronics engineering to design, develop and validate computing systems. Moderately (2) mapped with PSO1.	L3
3	CO5	PO4	2.5	The simple algorithms from the different domains such as mathematics, physics, etc. are the environments and platforms to create innovative solutions for given specifications to meet industrial needs. Moderately (2) mapped with PSO2.	L3
3	CO5	PO12	2.4	To Develop C program using different searching and sorting techniques on arrays and strings are environments and platforms to create innovative solutions for given specifications to meet industrial requirement. Moderately (2) mapped with PSO2.	L3

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course	Program Outcomes												-			
		Outcomes		1	1		1						1					
Modul	CO.#	At the end of	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO11	PO1	PSO	PSO	PSO	Lev
es		the course	1	2	3	4	5	6	7	8	9	0		2	1	2	3	el
		student																
		able to																
1	18CPS23.	Illustrate	2.4	2.4	-	2.5	2.5	-	-	-	-	-	-	2.4				L3
	1	simple																
		algorithms																
		from the																
		different																
		domains such																
		as																
		mathematics,																
		physics, etc																
2	18CPS23.	Construct a	2.4	2.4	-	2.5	-	1.7	-	-	-	-	-	2.4				L3
	2	programming																
		solution to the																
		given problem																
		using C.																
3	18CPS23.	Identify and	2.4	2.4	2.5	-	-	-	-	-	-	-	-	2.4				L3
	3	correct the																
		syntax and																
		logical errors																
	1000000	in C Program.			0 -													
4	18CPS23.	Modularize	2.4	2.4	2.5	-	-	-	-	-	-	-	-	2.4				L3
	4	ne given																
		functions and																
		structures																
5	18CPS23	Apply the	21	21	_	25	_	_	_	_	-	_	_	21				13
5	5	simple data	4	2.4		2.5								2.4				
		structure to																
		create a																
		simple menu																
		program and																
		the list of																
		applications.																
5	18CPS23.	Collect the	-	2.4	2.5	2.5	2.5	-	-	-	-	-	-	-				L3
	6	different data																
		structure and																
		Implement																
		special																
		functions.																
		AVG	2.4	2.4	2.5	2.5	2.5	2.5	1	1	1	1		2.4				-
-		Average																
		attainment (1, 2 or 2)																
-	PO. PSO	1.Engineering k	(now	vlede	ne'	2.Pro) blei	n A	nalı	ı Isis'	3 D	L esian		evelo) DDMPI	nt of	Solu	tions
	2,100	4.Conduct Inves	stiga	ition	s of	Corr	plex	(Prc	bler	ns; <u>f</u>	5.Mo	dern	Tool I	Usag	e; 6.Tl	he En	gineel	r and
		Society; 7.Envi	ironr	neni	t ai	nd	Sus	taine	abilit	ty;	8.Etl	hics;	9.Inc	lividu	al a	nd T	Геат	work;
		10.Communicat	ion;	11.	Proj	ect	Ма	inag	eme	ent	anc	d Fir	nance	2; 12	2.Life-l	long	Lear	rning;
		S1.Software Eng	ginee	ering	j; S2.	Date	а Ва	se N	1anc	agen	nent	; S3.W	Veb D	esigr	ו			

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Modul	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
es					
NIL	NIL	NIL	NIL	NIL	NIL

6. Content Beyond Syllabus

Topics &contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Modul	Gap Topic	Area	Actions	Schedule	Resources	PO Mapping
es			Planned	Planned	Person	
NIL	NIL	NIL	NIL	NIL	NIL	NIL

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Modul	Title	Teach.		No. of	f quest	ion in	Exam		CO	Levels
es		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Introduction	10	2	-	-	1	1	2	CO1,CO2	L3
2	Managing Input and output	10	2	-	-	1	1	2	CO3,CO4	L3
	operations									
3	arrays	10	-	2	-	1	1	2	CO1,CO5	L3
4	User Defined Functions and Recursion	10	-	2	2	1	1	2	CO3,CO4	L3
5	structure	10	-	-	2	1	1	2	CO2, CO5	L2
-	Total	54				5	5	10	-	-

2.Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Modul	Evaluation	Weightage in	СО	Levels
es		Marks		
1, 2	CIA Exam – 1	30	CO1, CO2, CO3,CO4	L3,L3,L3,L3
3, 4	CIA Exam – 2	30	CO2, CO3, CO4,C05	L3,L3,L3,L3
5	CIA Exam – 3	30	CO2,CO3,CO4	L2,L2
1, 2	Assignment - 1	10	CO1, CO2, CO3,Co4	L3,L3,L3,L3
3, 4	Assignment - 2	10	CO2, CO3, CO4,C05	L3,L3,L3,L3
5	Assignment - 3			
1, 2	Seminar - 1	NIL		
3, 4	Seminar - 2	NIL	-	-

5	Seminar - 3	NIL	_	-
1, 2	Quiz - 1	NIL	_	-
3, 4	Quiz - 2	NIL	_	-
5	Quiz - 3	NIL	-	-
1-5	Other Activities – Mini Project	-		
	Final CIA Marks	40	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	INTRODUCTION	Appr Time	10 Hrs
Δ	Course Outcomes	-	Blooms
-	The student should be able to:	_	
1	Illustrate simple algorithms from the different domains such as	CO1	
-	mathematics physics etc	001	25
		CO2	13
В	Course Schedule	-	
Class No	Module Content Covered	со	Level
1		CO1	L2
	Introduction		
2	Computer generations, computer types, bits, bytes and words	CO1	L2
3	CPU, Primary memory, Secondary memory	CO1	L3
4	ports and connections, input devices, output devices	CO1	L3
5	Computers in a network, Network hardware, Software basics, software types.	CO1	L2
6	Basic structure of C program	CO2	L2
7	Executing a C program. Constant, variable and	CO2	L2
	data types		
8	Operators and expressions	CO2	L2
С	Application Areas	со	Level
1	Illustrate simple algorithms from the different domains such as	CO1	L3
	mathematics, physics, etc		-
2	Construct a programming solution to the given problem using C.	CO2	L3
D	Review Questions	-	_
1	What is Computer? List and explain the generations of Computer.	CO1	L3
2	List and explain the types of Computer	CO1	L3
3	Draw a neat block diagram of Computer and explain	CO1	L2
4	Differentiate between Primary memory and Secondary memory	CO1	L2
5	What is network? List and explain types of network.	CO1	L3
6	What is Software? Explain the two types of software.	CO1	L2
7	What is the purpose of pseudo code? What does pseudo code consist of?	CO1	L2
8	What is an algorithm? Explain the characteristics of an algorithm?	CO1	L2
9	Differentiate between algorithm & flowchart.	CO1	L3
10	Write an algorithm and draw a flowchart to find the largest of three	CO2	L2
	numbers.		
11	Write an algorithm and draw a flowchart to find roots of quadratic	CO2	L2
	equation.		
12	Write an algorithm and draw a flowchart to print all prime numbers	CO2	L2
	petween two numpers.		
E	Experiences	-	_
1	musurate simple algorithms from the different domains such as mathematics, physics, etc		

Module – 2

Title:	Managing Input and output operations	Appr Time:	10 Hrs
Α	Course Outcomes	-	Blooms
-		-	Level
1	Construct a programming solution to the given problem using C.	CO3	L3
В	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
9	Managing Input operation	CO3	L3
10	Managing output operation	CO3	L3
11	Conditional Branching and Loops	CO3	L3
12	Example programs	CO3	L3
13	Finding roots of a quadratic equation	CO3	L3
14	Computation of binomial coefficients	CO3	L3
15	Plotting of Pascals triangle	CO4	L2
16	Example programs	CO4	L2
С	Application Areas	CO	Level
1	Construct a programming solution to the given problem using C.	CO3	L3
d	Review Questions	-	-
1	Explain the formatted I/O functions of C language with syntax and example	CO3	L3
2	Explain printf() function with an example	CO3	L3
3	Explain the format of scanf() function with examples	CO3	L3
4	Explain the getch() and gets() functions with example.	CO3	L2
5	Explain the putch() and puts() functions with example	CO3	L2
6	Write a C program to print numbers from 4 to 9 and their squares using printf() function	CO3	L3
7	Write a program that takes an integer, a char, and a string from the user and display it on the screen	CO3	L2
8	Write a C program that takes the radius of the circle and calculates the area and perimeter of circle	CO4	L2
9	Write a C program that takes from the user and calculates their sum and average	CO3	L3
10	Write a C program that takes text from the user by using gets() and print that text on the screen using puts() function	CO4	L2
е	Experiences	-	-
1	Construct a programming solution to the given problem using C.		

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs (Code:	18CPS23	Sem:	II	Marks:	30	Time:1 60	minute	es	
Cour	Course: Cryptography and Network Security And Cyber Law									
-	-	- Note: Answer any 2 questions, each carry equal marks.							СО	Level
1	а	What is Cor	nputer? List	and explain	the genera	tions of Corr	iputer.	7	CO1`	L3
	b	List and exp	plain the typ	es of Compi	uter			8	CO2	L2
2	а	Draw a neat	t block diagi	ram of Com	puter and ex	cplain		7	CO1	L3
	b	Explain the	e formatted	I/O function	ons of C lá	anguage wit	h syntax anc	8	CO2	L3
		example								
3	а	Explain prin	tf() function	with an exa	mple			7	CO3	L3
	b	Explain the format of scanf() function with examples						8	CO3	L2
4	а	Explain the getch() and gets() functions with example.						8	CO4	L3
	b	Write a pro	gram that ta	akes an inte	ger, a char,	and a string	from the user	7	CO3	L2

and display it on the screen

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

					Model	Assignment	: Questi	ions						
Crs Co	ode:	18CF	PS23	Sem:	11	Marks:	1	10/ 10	Time:	90 – 120	minutes	S		
Cours	ie:	C Pro	gramn	ning for Prob	lem Solving									
Note:	Each	stuc	lent to	answer 2-	3 assignmen	ts. Each ass	ignmer	nt car	ries equal m	ark.				
SNo	US	5N			Assignn	nent Descri	ption			Marks	CO	Level		
1			What	is Comput	er? List and e	explain the	generat	tions	of Computer	5	CO1	L2		
2			List a	nd explain	the types of	Computer				5	CO2	L2		
3			Draw	a neat bloc	ck diagram o	f Computer	and ex	plain		5	CO2	L2		
4			Differ	entiate bet	ween Primar	y memory a	and Sec	conda	ary memory	7	CO2	L2		
5			What	is network	? List and ex	plain types	of netw	/ork.		8	CO1	L3		
6			What	is Software	e? Explain th	e two types	of soft	ware		5	CO2	L2		
7	7 What is the purpose of pseudo code? What does pseudo code consist of?				7	CO3	L3							
8			What	: is an algor	ithm? Explair	n the charac	cteristic	s of a	an algorithm?	' 7	CO3	L2		
9			Differ	entiate bet	ween algorit	hm & flowc	hart.			6	CO4	L2		
10			Write three	an algorith numbers.	im and draw	a flowchart	to find	the l	argest of	8	CO4	L3		
11			Write equa	e an algorith tion.	im and draw	a flowchart	to find	roots	s of quadration	7	CO4	L3		
12	2 Write an algorithm and draw a flowchart to print all prime numbers between two numbers.				7	CO4	L2							
13			Draw	a neat bloo	ck diagram o	f Computer	and ex	plain		7	CO1	L3		
14			Expla exam	iin the form Iple	atted I/O fur	nctions of C	langua	age w	rith syntax ar	id 10	CO1	L3		

D2. TEACHING PLAN - 2

Module - 3

Title:	Arrays	Appr	10 Hrs
		Time:	
a	Course Outcomes	-	Blooms
	The student should be able to:	-	Level
	Identify and correct the syntax and logical errors in C Program	CO5	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
21	1- D Arrays	CO5	L2,L3
22	2- D Arrays	CO5	L3
23	Character arrays and Strings	CO5	L3
24	Example programs	CO5	L3
25	Searching Algorithms: Linear search	CO5	L3
26	Searching Algorithms : Binary search	CO1	L2,L3
27	Sorting Algorithms: Bubble sort	CO1	L3
28	Sorting Algorithms: Selection sort.	CO4	L3
С	Application Areas	CO	Level
1	Identify and correct the syntax and logical errors in C Program	CO5	L3
d	Review Questions	-	-
1	What is an array? What are its advantages and disadvantages?	CO5	L2
2	Differentiate between array and ordinary variables	CO5	L3
3	Explain the declaration of single and multidimensional arrays with examples	CO5	L3
4	Explain the initialization of single and multidimensional arrays with	CO5	L3

	examples		
5	What is an array? How are they declared in C? What are the rules to be followed while using arrays?	CO5	L3
6	With an example, explain how the elements of two dimensional arrays stored in row major and column major order.	CO5	L2
7	Define string? List out all the string handling functions in C. Explain any two with example.	CO5	L2
8	How are strings processed in C? How are they declared and initialized? Explain with example.	CO5	L3
е	Experiences	-	-
1	Identify and correct the syntax and logical errors in C Program		

Module – 4

Title:		Appr	10 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Modularize the given problem using functions and structures	CO4	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
21	User Defined Functions	CO2	L2
22	Function calls	CO2	L2
23	Category of function	CO2	L2
27	Nesting of function	CO1	L3
28	Recursion	CO2	L3
29	Example programs	CO3	L3
31	Finding Factorial of a positive integers	CO3	L3
32	Fibonacci series.	CO4	L3
С	Application Areas	CO	Level
1	Modularize the given problem using functions and structures	CO5	L2
d	Review Questions	-	-
33	What is function? What are the needs of function? What are its advantages?	CO2	L2
34	Explain the function declaration with a suitable example.	CO2	L2
35	What is function? Explain the different types of functions based on parameter.	CO2	L2
36	What are the elements of functions? Explain.	CO1	L3
37	Explain the categories of functions with examples.	CO2	L3
38	What is user defined function? What is the need of user-defined function? What is the need of user defined? Why user defined functions are required for large and complex problems?	CO3	L3
е	Experiences	-	-
1	Modularize the given problem using functions and structures		

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs Code:			Sem:	II	Marks:	30	Time: 7	5 minute	S	
Course:		C Programmir	ng for Probler	n Solving						
-	-	Note: Answ	te: Answer any 2 questions, each carry equal marks.							Level
1	а	What is an a	rray? What	are its adva	ntages and	disadvantag	es?	7	CO5	L2
	b	Differentiate	between a	rray and orc	linary variab	les		8	CO5	L2
1	а	Explain the examples	declaratio	n of single	e and muli	tidimensiona	al arrays wit	h 7	CO2	L3

	b	Explain the initialization of single and multidimensional arrays with examples	8	CO2	L3
3	а	What is function? Explain the different types of functions based on parameter	7	CO2	L2
	b	What are the elements of functions? Explain.	8	CO1	L3
4	а	Explain the categories of functions with examples.	7	CO2	L3
	b	What is user defined function? What is the need of user-defined	8	CO3	L3
		function? What is the need of user defined? Why user defined functions			
		are required for large and complex problems?			

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

					\sim	1odel Assignment	Questi	ons					
Crs Co	ode:	18CP	S23	Sem:	II	Marks:	10	Time:	90 - 120	– 120 minutes			
Cours	ie:	C Prog	gramr	ning for Pro	blem Sol	ving							
Note:	lote: Each student to answer 2-3 assignments. Each assignment carries equal mark.												
SNo	U	USN Assignment Description						Marks	со	Level			
1			Wha	at is an arra	ay? Wha	t are its advantag	es and	disadvantages?	7	CO5	L3		
2			Diffe	erentiate b	etween	array and ordinary	/ variat	oles	8	CO5	L3		
3			Expl exar	ain the de nples	claratior	n of single and mu	ıltidime	ensional arrays wit	h 7	CO5	L2		
4			Expl with	ain the ir examples	itializati	on of single and	multio	dimensional array	s 6	CO5	L2		
5			Wha on p	at is functio arameter.	on? Expl	ain the different ty	pes of	functions based	6	CO5	L2		
6			Wha	at are the e	elements	s of functions? Exp	olain.		8	CO2	L2		
7			Expl	ain the ca	egories	of functions with	examp	les.	7	CO2	L3		
8			Wha func func	at is user o tion? What tions are r	lefined f at is the equired	function? What is need of user de for large and com	the ne fined? plex p	ed of user-defined Why user defined roblems?	d 8 d	CO2	L3		
9			Wha	at are the e	elements	s of functions? Exp	olain.		7	CO1	L3		
10			Expl	ain the ca	egories	of functions with	examp	les.	8	CO2	L3		
11			Wha func func	at is user o tion? What tions are r	lefined f at is the equired	function? What is need of user de for large and com	the ne fined? plex p	ed of user-defined Why user defined roblems?	d 7 d	CO3	L2		

D3. TEACHING PLAN - 3

Module – 5

Title:	IT act aim and objectives	Appr	10 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	 IT act aim and objectives Course Outcomes The student should be able to: Apply the simple data structure to create a simple menu program and th list of applications. Collect the different data structure and Implement special functions Course Schedule No Module Content Covered Structure Arrays of Structure Arrays within Structure Example programs Pointers Pointers Pointers Preprocessor Directives 		Level
1	Apply the simple data structure to create a simple menu program and the	CO4	L2
	list of applications.		
2	Collect the different data structure and Implement special functions	CO5	L2
b	Course Schedule		
Class No	Module Content Covered	CO	Level
41	Structure	CO4	L2
42	Arrays of Structure	CO2	L2
43	Arrays within Structure	CO2	L2
44	Example programs	CO2	L2
45	Pointers	CO1	L2
46	Pointer expression	CO2	L2
47	Array of pointers	CO3	L2
48	Preprocessor Directives	CO3	L2

		CO5	L2
С	Application Areas	СО	Level
1	Apply the simple data structure to create a simple menu program and the	CO9,CO1	L2
	list of applications.	0	
d	Review Questions	-	-
1	Explain the declaration of single and 2-dimensional arrays with examples	CO2	L2
2	Write a C program to implement linear search.	CO2	L2
3	Write a C program to implement Selection Sort.	CO2	L2
4	Explain strlen(), strcpy(), strcat(), strcmp(), strrev() with examples.	CO1	L2
5	What is function? Explain the function declaration with a suitable example.	CO4	L2
7	Experiences	-	-
1	Apply the simple data structure to create a simple menu program and the		
	list of applications.		

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs (Code	18CPS23	Sem:		Marks:	30	Time:	60 minute	es	
Cour	se:	C Programm	ing for Prob	lem Solving	5					
-	-	Note: Answ	ver any 2 d	questions	, each carry ea	qual mar	ks.	Marks	СО	Level
1	а	Explain mer	xplain memory allocation functions used in C with example program						CO2	L2
	b	Write a pro	gram usinរ្	g pointers	in C to print a s	string in r	everse order	8	CO4	L2
2	а	Explain brie	fly about t	he header	files available	with C.		10	CO2	L2
	b	Explain any	two prepr	ocessor di	rectives.			5	CO1	L2
3	а	Explain file	inclusion d	irectives v	vith example.			7	CO5	L2
	b	Explain defi	ning macro	o with exa	mple			8	CO3	L2
4	а	Explain defi	ning macro	o with arg	uments with ex	ample.		8	CO3	L2
	b	Explain defi	ning neste	d macros	with example.			7	CO4	L2

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions											
Crs Code: 18		18CPS23	Sem:	II	Marks:	5 / 10	Time:	90 - 120	minute	S		
Course: C Prog		C Program	ming for Pr	oblem Solvi	ing							
Note: Each student to answer 2-3 assignments. Each assignment carries equal ma								ark.				
SNo	L	JSN		A	ssignment Desc	ription		Marks	СО	Level		
1			Explain arı	ay of struc	tures with exam	ole.		6	CO4	L2		
² Write a C program to count the number of characters, Numb						er 8	CO4	L2				
			of lines an	d number	of white spaces f	rom a file.						
3			Create a s	structure s	t_record having	member"	s student Nam	e 7	CO5	L2		
			(Sname) a	nd student	s marks (Smarks	. Write a (C program whic	h				
			reads nam	ne and ma	rks of two stude	nts and co	ompare whethe	er				
			both stude	ents are sa	me		-					
4			Write a pi	ogram to	find the net sala	ry of an e	mployee if gros	s 6	CO3	L2		
			salary and	deduction	are known							
5			Mention	syntax an	d give an exam	ple for t	he following:	i) 8	CO5	L2		
			Structure	, definition i	i) Structure varial	ole declara	ation					
6			Write a pr	ogram tha	t takes roll num	pers, name	es, and marks o	of 7	CO3	L2		
		1	three stud	lents in th	ree different su	ojects as i	input and print	s				
		1	total mark	s and perc	entage of each st	udent						
7			Implemen	t structur	es to read, wri	e and co	ompute averag	e 7	CO3	L2		
			marks an	d display	the students s	coring ab	ove and belo	N				
			average m	arks for cla	ass of N students.	U						
8			Write a p	rogram th	at takes book id	l, author	name, publishe	er 7	CO4	L2		

	name, and price for a book as input and prints the sam information as output	9		
9	What are pointers? Why is it necessary?	8	CO2	L2

F. EXAM PREPARATION

1. University Model Question Paper

C-PROGRAMMING FOR PROBLEM SOLVING (18CPS13/23)

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing one full question from each module.

MODULE 1

1	а	Explain different types of computer.	^{6Marks)} b
	Wł	hat is Software? Explain different types of software.	6 Marks) ^c
	Wi	th a neat diagram explain the basic structure of a computer (8	8 Marks)
		OR	
2	а	Explain a general structure of C program with an example. (8 Marks)
	b	What is a token? What are different types of tokens available in C language? Explain. (8 Marks)
	c	Evaluate the following expressions:	
		i) 22 + 3 < 6 && !5 22 = =7 && 22 - 2 > +5	4 Marks)
		ii) a + 2 > b !c && a = = d *a − 2 < = e Where a=11, b=6, c=0, d = 7 and e=5.	4 · · · · · · · · · · · · · · · · · · ·
MOD	UL	E 2	
3.	а	Explain formatted input and output statement with examples.	6 Marks)
	h	Explain if, if-else, nested if-else and cascaded if-else with examples and (8 Marks)
	D	syntax.	
		An electricity board charges the following rates for the use of electricity: (6 Marks)
		for the first 200 units 80 paise per unit: for the next 100 units 90 paise per	
		unit: beyond 300 units Rs 1 per unit. All users are	
	СС	harged a minimum of Rs. 100 as meter charge. If the total amount is more	
		than Rs 400 then an additional surcharge of 15% of total amount is	

than Rs 400, then an additional surcharge of 15% of total amount is charged. Write a program to read the name of the user, number of units consumed and print out the charges.

4	а	Explain the different types of loops in C with syntax.	(8 Marks)
	b	Show how break and continue statements are used in a C-program, with example.	(4 Marks)

	c	Develop a C program to generate and plot the Pascal triangle.	(8 Marks)			
MOD	UL	E 3				
5	a	What is an array? How a single dimension and two dimension arrays are declared and initialized?	(12 Marks)			
	b	Write an algorithm and develop a C program that reads N integer numbers and arrange them in ascending order using selection Sort. OR	(08 Marks)			
6	a	Explain string manipulation library functions with their syntaxes. Write a program to check whether a string is palindrome or not.	(12 Marks)			
	b	Write an algorithm and develop a C program to search an integer from N $$				
		numbers in ascending order using binary searching technique	(8 Marks)			
MOD	UL	E 4				
7.	а	What is function? Explain different classification of user defined functions				
		based on parameter passing and return type with examples	(12 Marks)			
	b	Write a c-program using functions to generate the Fibonacci series.	(8 Marks)			
		OR				
8	a	What is recursion? Explain. Write a c-program using recursive function for Binary to Decimal Conversion.	(10 Marks)			
	b	Write a program in C using functions to swap two numbers using global variables concept and call by reference concept.	(6 Marks)			
	c	Write a c-program using function to check whether the given number is prime or not.				
MODU	LE	-E 5				
9	a b	What is structure? Explain C syntax of structure declaration with example. Explain structure within a structure with an example.	(6 Marks) (6 Marks)			
	c	Write a c-program using structures to read, write, compute average - marks and display the students scoring above and below the average marks for a class of N	(8 Marks)			
		students.				
10	_		(. 			
10	a 1	what is a pointer? Explain how the pointer variable declared and initialized.	(4 Marks)			
	b	Write a program in C to find the sum and mean of all elements in an array using				
		pointers.	(6 Marks)			

c Explain different categories of pre-processor directives used in C.

(10 Marks)

Cou	rse:	C Programming for Problem Solving Month /	' Year	2018	
Crs (Code:	18CPS23 Sem: II Marks: 60 Time:		180 m	inutes
-	Note	Answer all FIVE full questions.	Marks	СО	Level
1	а	What is function? What are the needs of function? What are its advantages?	8	CO1	L2
	b	Explain the function declaration with a suitable example.	8	CO2	L3
		OR			
2	а	Explain the categories of functions with examples.	8	CO2	L2
	b	What is user defined function? What is the need of user-defined function? What is the need of user defined? Why user defined functions are required for large and complex problems?	8	CO2	L2
3	а	What are the different ways of passing parameters to functions? Explain.	8	CO3	L3
	b	Explain the difference between "call by value" and "call by reference" with suitable examples	8	CO3	L2
		OR			
4	а	Write a C program to find standard deviation of n values using functions.	8	CO4	L2
	b	Write a C program that uses a function to sort an array of integers.	8	CO4	L2
5	a	Write a C function to find maximum and minimum elements of one dimensional array.	8	CO5	L2
	b	Write a C function to find the product of two matrices.	8	CO5	L3
		OR			
6	а	Explain the declaration of single and 2-dimensional arrays with examples	8	CO5	L3
	b	Write a C program to implement linear search.	8	CO5	L2
7	а	Write a C program to implement Selection Sort.	6	CO3	L2
	b	Explain strlen(), strcpy(), strcat(), strcmp(), strrev() with examples.	5	CO4	L3
		OR			
	С	Explain the use of break and continue statement with examples.	5	CO5	L2
8	а	What are the verities of if statement? Explain.	5	CO4	L2
	b	Write a C program to check whether the entered number is even or odd	6	CO2	L3
	С	What is looping? What are the different types of looping? Explain	5	CO5	L3
9	a	Differentiate between while and do-while loop. Give example for each	8	CO5	L2
	b	Write a C program to compute the binomial coefficients by reading the	8	CO3	L2
		value of n			
		OR		CO3	
10	а	Write a C program to plot a Pascal"s triangle by reading the value of n	8	CO4	L2
	b	Write a C program to generate the Fibonacci sequence.	8	CO5	L2

2. SEE Important Questions

Course:		C Programming f	/ Year									
Crs Code:		18CPS23	Sem:	II	Crs Code:	18CPS23	Sem:					
	Note	Answer all FIV	Answer all FIVE full questions. All questions carry equal marks.									
Modul	Qno.											
е												
1	1	Explain the cat	8	CO1								
1	2	What is user	8	CO1								
		function? What										
		are required fo										
1	3	What are the different ways of passing parameters to functions?						8	CO1			
		Explain.										

1		Explain memory allocation functions used in C with example program	8	CO1	
1	4	Write a program using pointers in C to print a string in reverse order	8	CO2	
1	5	Explain briefly about the header files available with C	8	CO1	
11	6	Explain bieny about the neader mes available with e.	7	CO1	
1		Explain any two preprocessor directives.	/ 8		
1			0		
	/	Explain defining macro with example	0	001	
1	8	Explain defining macro with arguments with example.	8	CO1	
1	9	Explain defining nested macros with example.	8	CO1	
1	10	Explain memory allocation functions used in C with example program	7	CO1	
1	11	Write a program using pointers in C to print a string in reverse order	5	CO1	
1	12	Write a C program to find out largest of three numbers	10	CO2	
1	13	Explain any three bitwise operators with an example each	6	CO2	
2	14	List bitwise operators and give example for any two	6	CO2	
2	15	Explain the concept of conditional operator and comma operator in C	8	CO2	
2	16	What are unary and binary operators? Explain with examples.	6	CO2	
2	17	Explain the precedence and associativity of arithmetic operators with examples	8	CO2	
2	18	Write a C program in which comma works as the operator as well as separator	8	CO2	
2	19	Write a C program to find the largest of three numbers using conditional operators	8	CO2	
2	20	Define expression. Explain different types of Expressions	6	CO2	
2	21	How do you classify operators?	5	CO2	
2	22	Differences between ++X and X++ operators	8	CO2	
2	23	What is type conversion? Explain with example the types of type conversion.	7	CO2	
2	24	What is Computer? List and explain the generations of Computer.	6	CO2	
2	25	List and explain the types of Computer	5	CO3	
2	26	Draw a neat block diagram of Computer and explain	8	CO3	
2	27	Differentiate between Primary memory and Secondary memory	5	CO3	
2	28	What is network? List and explain types of network.	5	CO3	
2	29	What is Software? Explain the two types of software.	8	CO4	L
2	30	What is the purpose of pseudo code? What does pseudo code consist of?	6	CO4	
2	31	What is an algorithm? Explain the characteristics of an algorithm?	7	CO4	
2	32	Differentiate between algorithm & flowchart.	5	CO4	
2	33	Write an algorithm and draw a flowchart to find the largest of three numbers.	6	CO4	
2	34	Write an algorithm and draw a flowchart to find roots of quadratic equation.	7	CO4	
2	35	Write an algorithm and draw a flowchart to print all prime numbers between two numbers.	5	CO4	
2	36	Write basic structure of C program and explain its different sections	8	CO4	
2	37	What is the purpose of a comment? How does a comment begin and end?	6	CO4	
3	38	What is constant? Explain different types of constants with examples.	6	CO5	
3	39	Define variables. List the rules for naming variables.	7	CO5	
3	40	Why do you declare variables? Explain with suitable example.	6	CO5	
3	41	Differentiate between variables and constants.	8	CO2	
3	42	List all the operators used in C language and evaluate following expressions: (Jan2019) i) x = a – b / 3 c * 2 – 1 when a= 9, b= 12, c= 3 ii) 10 != 10 5 < 4 & 8	8	CO4	
3	43	What is data type? Explain the primitive data types that are supported by C	8	CO2	

4	44	Distinguish between sting constant and character constant with example.	8	CO1	
4	45	What are the rules to be followed to declare an identifier with example?	8	CO5	
4	46	Write a note on different types of Type conversions with an example/program for each	5	CO3	
4	47	Define C- tokens. List and explain different C- tokens.	7	CO3	
4	48	Write a C program to convert number of days into months and days. (Hint: Assume a month has 30 days) (For e.g. 45 days = 1 month and 15 days).	8	CO4	
4	49	Write a note on operator precedence and Associativity.	8	CO2	
4	50	Write a C program to compute simple Interest. Draw the flowchart for the same.	8	CO4	
5	51	Explain the C operators with examples	8	CO2	
5	52	Explain different unary operators in C.	8	CO1	
5	53	Explain the assignment statement. How is it different from algebraic expression? Substantiate with examples	6	CO5	
5	54	Explain the increment and decrement operators with example	8	CO3	
5	55	Explain the relational operators in C with examples.	8	CO3	
5	57	List and explain the types of Computer	5	CO4	

Course Outcome Computation

Academic Year:												
Odd / Even seme	ester											
INTERNAL TEST			T1			T2						
Course Outcome	CO1		CO2		CO3		CO4		CO5		CO5	
QUESTION NO	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV
MAX MARKS												
USN-1												
USN-2 USN-3												
USN-4												
USN-5												
USN-6												
Average Co Attainment	C											
LV Threshold : 3:>	-60%, 2:>	>=50%	and <=	60%, 1:	<=49%							

CO1 Computation :(2+2+2+3)/4 = 10/4=2.5

PO Computation

Program Outcome	PO1		PO3		PO3		PO1		PO12		PO12		
Weight of CO - PO	3		:	L		3	2	2		2	3	3	
Course Outcome	CO1		CO2		CO3		CO4		CO5		CO5		
Test/Quiz/Lab			T1						Т	2			
QUESTION NO	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	
MAX MARKS													
USN-1													
USN-2													
USN-3													
USN-4													
USN-5													
USN-6													